Bitvise SSH Server
Virtual Filesystem Provider Development Kit (SfsKit)

updated for SSH Server version 6.31

Summary

A Bitvise SSH Server administrator can configure virtual filesystem layouts which a user can access by
connecting to the SSH Server using SFTP or SCP. A mount point in the layout can map to a Windows
filesystem directory served by the SSH Server, or to storage implemented by a pluggable virtual filesystem
provider. The SfsKit provides tools, definitions, and an example to implement such a provider.

Audience

SfsKit is intended for use by experienced C++ developers comfortable with creating project settings,
building a Windows DLL, and interpreting header files and source code. For the most part, the code
provided in SfsKit is the documentation. If this makes you uncomfortable, you may find SfsKit unsuitable.

License
Copyright (c) 2015 by Bitvise Limited. All rights reserved.
Use of SfsKit is permitted in source or compiled form, with or without modification, free of charge.

Redistribution of necessary portions of SfsKit is permitted in compiled form, with or without modification,
as part of a compiled program that uses SfsKit.

Redistribution is permitted in source form when accompanied by source code for a program that uses
SfsKit. Redistribution in source form must reproduce the original SfsKit without omission or modification,
or must clearly document any omissions and/or modifications. Redistribution in source form must include
this license unmodified.

Use of SfsKit does not imply a license to use any other Bitvise product, including but not limited to Bitvise
SSH Server, SSH Client, or FlowSsh. Such licenses are independent of and separate from this license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Content

SfsProvider: Contains definitions of the interface a provider needs to implement in SfsProvider.h. Contains
utility classes and methods a provider can (and should) use in SfsUtilities.h/.cpp.

SfsWin: Implements an example virtual filesystem provider that provides access to the Windows
filesystem. Reproduces basic functionality of the default provider implemented by the SSH Server.

Binaries: Includes SftpClient.exe — a command-line SFTP test client exposing low-level access to SFTP
requests, allowing for granular testing.

Guidance

A virtual filesystem provider exposes its functionality via C-style functions GetSfsVersion, HandleSfsInit,
HandleSfsRequest, and HandleSfsDestroy.

If a file transfer session uses the same virtual filesystem provider attached using different parameters to
multiple mount points, this will be represented with multiple calls to HandleSfsInit. A provider must be
able to handle this, and to handle HandleSfsRequest and HandleSfsDestroy calls appropriately, depending
on the context passed to them.

See SfsWin for an example of functionality a virtual filesystem provider should implement. See
SfsProvider for definitions of the interface that needs to be implemented.

All provider functions are called from fibers with a very limited stack. Refrain from using stack allocation,
and do not use deep recursion.

Your implementation can use blocking /0, but this can decrease performance and responsiveness of the
file transfer session as a whole. To minimize impact on the rest of the file transfer session, use non-
blocking 1/0.

Non-Blocking I/O

For non-blocking 1/0, use context->AddWaitObject, AddTimer, and Wait. Wait may return even if set
conditions are not met, so it must be called in a loop. SfsWin shows how to do so. Example:

while (true)

{
if (!context->AddWaitObject(eventHandle) ||

Icontext->AddTimer(context, timeout))
throw ContextFailure();

if (!context->Wait())
throw ContextFailure();

if (WaitForSingleObject(eventHandle, @) != WAIT_TIMEOUT ||
currentTime > timeoutTime) // pseudo-code
break;

Logging
In order for the SSH Server’s file transfer logging, the Activity tab, and the On-upload command to work,
the virtual filesystem provider must perform proper logging:

1. SendLog and SendLogByHandle must be called before SendResponse.

2. File transfer statistics must be reported using TransferFile (see SfsUtilities.h).
SfsWin shows how to do so.

3. Within HandleSfsDestroy, closing of any still-open files must be logged using SendLogByHandle.
SfsWin shows how to do so.

4. Within HandleSfsRequest, SendLogByHandle can be used instead of SendLog everywhere where
SFS_Request contains a handle.

The Log class supports generic and concrete logging.

Generic Logging

The following constructor is used for generic logging:

Log: :Log(DefaultCode code, unsigned int reserve = 0);

In generic logging, code is either Log::Success (0), Log::Failure (200), or Log::Progress (600).

Generic logging is used to log an event with characteristics that are typical of, and related to, the SFTP
action being executed. For example, while handling SFS_RequestType::Open, construct a Log object
generically using Log(Log::Failure) to indicate that the open request failed.

Concrete Logging

The following constructor is used for concrete logging:

Log::Log(unsigned int code, wchar_t const* desc, bool copyDesc,
unsigned int reserve = 0);

In concrete logging, code is constructed as SFS_LogAction + SFS_LogStatus. SFS_LogAction is a multiple of
1000 corresponding to an SFTP action, defined in SfsProvider.h. Allowable values for SFS_LogStatus range
from 0 — 199 for Success; 200 — 599 for Failure; and 600 — 999 for Progress.

Concrete logging is used to report actions taken in addition to the action being executed. For example,
when executing HandleSfsDestroy, the implied action is SFS_LogAction::Destroy. In order to report closing
of still-open files, use concrete logging to report SFS_LogAction::Close. SfsWin shows how to do so.

You can also use concrete logging if you wish to record your own SFS_LogStatus code, along with your
own description. For an example, see SfsWin.cpp:

enum { SetFileTimeFailureAsProgress = 601 };
wchar_t const* message =

L"Setting file time for the newly created directory failed.";
Log(SFS_LogAction: :MkDir + SetFileTimeFailureAsProgress, message,

Every SFS_LogStatus code is intended to have its own corresponding description, and vice versa.

References

The SFTP implementation in Bitvise SSH Server and Client, as well as the structure of the SSH Server’s
virtual filesystem, is based on SFTP protocol version 6, defined in the following documents:

https://tools.ietf.org/html/draft-ietf-secsh-filexfer-13

https://tools.ietf.org/html/draft-galb-filexfer-extensions-00

We recommend keeping these specifications handy during development.

https://tools.ietf.org/html/draft-ietf-secsh-filexfer-13
https://tools.ietf.org/html/draft-galb-filexfer-extensions-00

